The Run II Physics Program

John Womersley

Fermi National Accelerator Laboratory, Batavia, Illinois

Representing the CDF and DØ collaborations

The Run II physics program

- A broad physics program which evolves as a function of luminosity
 - There is interesting physics at all luminosities, starting now with 50-100 pb⁻¹ and continuing through 0.3, 1, 2, 5, 10, 15 fb⁻¹
- This physics program has begun
- The goal of the collaborations is to
 - Maximize this physics program
 - Exploit the full potential of the world's highest energy collider and the large investments we have made in the accelerator and detectors
 - <u>Lay a firm foundation</u> for the LHC and for future initiatives at the TeV scale
 - Attract and train the best students in the field
 - Clarify physics requirements
 - An international program in the US groundwork for the future

Big Questions at the Electroweak Scale

- The Tevatron is the only accelerator in operation that can help to answer
 - What is the structure and what are the symmetries of space-time?
 - Why is the weak force weak?
 - What is cosmic dark matter made of?

About six to seven times more mass in the universe (27±4%) than there is baryonic matter (4.4±0.4%)

What is this stuff? How can we get a firmer understanding of it?

Accelerators

 Run II is the only opportunity to make such a major discovery at an accelerator in the United States

The program

- The Run II Physics program
 - Confront the standard model through precise measurements
 - The strong interaction, the quark mixing matrix, the electroweak force and the top quark
 - Directly search for particles and forces not yet known
 - Both those predicted (Higgs, supersymmetry, dark matter, extra dimensions) and those that would come as a surprise
- The program was developed in a series of workshops between 1998 and 2000
 - http://fnth37.fnal.gov/run2.html
- The program stretches from the GeV scale to the TeV scale
- Here I can attempt only a superficial survey and will concentrate on the physics that gains most from luminosity
 - Illustration of the breadth of the program:
 110 talks from CDF and DØ at APS/DPF meeting in April

Two Worldwide Collaborations

More than 50% non-US: a central part of the world HEP program

12 countries, 59 institutions 706 physicists

19 18 countries, 78 institutions 80 664 physicists

Operations Status

- Both experiments are operating well and recording physics quality data with high (~ 90%) efficiency
- 100-140 pb⁻¹ being used for analysis for summer 2003
- Data are being reconstructed within a few days

The Top Quark

- Why, alone among the elementary fermions, does the top quark couple strongly to the Higgs field?
 - Is nature giving us a hint here?
 - Is the mechanism of fermion mass generation indeed the same as that of EW symmetry breaking?
 - The top is a window to the origin of <u>fermion</u> masses
- The Tevatron Collider is the world's <u>only source of top quarks</u>
- We are measuring its
 - Mass
 - Production cross section
 - Spin
 - Through top-antitop spin correlations
 - Electroweak properties
 - Through single top production
- Any surprises, anomalies?

The Run II Top Physics Program has begun

The top quark rediscovered, 2003

Cross section

CDF dileptons $\sigma = 13.2 \pm 5.9_{stat} \pm 1.5_{sys} pb$ CDF $l + jets \ \sigma = 5.3 \pm 1.9_{stat} \pm 0.8_{sys} \pm 0.8_{lum} pb$ DØ (comb.) $\sigma = 8.4^{+4.5}_{-3.7} (stat)^{+5.3}_{-3.5} (syst) \pm 0.8 (lumi) pb$

o (pb)

CDF mass _

$$M_{top} = 171.2^{+14.4}_{-12.5 \text{ stat}} \pm 9.9_{sys} \text{ GeV/c}^2$$

Top mass

- We can look forward to improved precision on m_t in the near future
 - More data (few hundred pb⁻¹)
 - Expect ~ 500 b-tagged lepton+jets events per experiment per fb⁻¹
 - cf. World total at end of Run I ~ 50
- Improved techniques
 - e.g. new DØ Run I mass measurement is equivalent to a factor 2.4 increase in statistics:

$$m_{top} = 179.9 \pm 3.6$$
 (stat) GeV/c² (5.6 GeV from PRD 58 052001,1998)

Improved top mass measurements help to constrain the Higgs mass

Δm_t	l + jets	dilepton	
2 fb ⁻¹	± 2.7 GeV	± 2.8 GeV	
10 fb ⁻¹	± 1.6 GeV	± 1.6 GeV	

per experiment, using the "classic" technique

[from M. Grunewald et al., hep-ph/0111217 (2001)]

华

Top physics program

- Precise knowledge of m_t (~1 GeV) will be very useful even after a light Higgs is discovered
 - Is it H_{SM} or SUSY h?
 - Constrain the stop sector: [M. Beneke et al., hep-ph/0003033]
- Single top production
 - The way to measure top width
 - So far unobserved

 With ~ 1 fb⁻¹ should be able to see signals for both s and t-channel production (have different sensitivity to new physics)

	∆σ (s)	$\Delta V_{tb} $ (s)	Δσ (t)	$\Delta V_{tb} (t)$
2 fb ⁻¹	21%	12%	12%	10%
10 fb ⁻¹	9%	6%	5 %	8%

[scaled from T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. D58, 094021 (1998)]

- Top-antitop spin correlations
 - With 2fb⁻¹, distinguish spin- $\frac{1}{2}$ from spin-0 but only at the 2σ level
- New physics
 - tt mass, top p_T , rare decays and nonstandard decays, anomalous single top ...

Electroweak Physics

- In Run II we will complement direct searches for new phenomena with indirect probes
 - New particles and forces can be seen indirectly through their effects on electroweak observables.
 - Tightest constraints come from improved determination of the masses of the W and the top quark.
- Both experiments have preliminary results from Run II samples of W and Z candidates:

Prospects for W mass

Current knowledge of m_w

- hadron colliders:
 - 80 454 \pm 59 MeV
- World (dominated by LEP)
 - 80 451 \pm 33 MeV

Run II prospects

(per experiment)

	∆m _W		
2 fb ⁻¹	±27 MeV		
10 fb ⁻¹	±18 MeV		

[from M. Grunewald et al., hep-ph/0111217 (2001)]

We have shown we can measure the W mass precisely at the Tevatron, but to improve on LEP will require $\sim \rm fb^{-1}$ datasets - not a short term goal

 $dm_H/dm_W \sim 50 \text{ GeV}/25 \text{ MeV}$

Other electroweak measurements

• Forward-backward asymmetry A_{FB} in $Z \rightarrow ee$

CDF – Paper in preparation

Projection for 10 fb⁻¹

- measure effective $\sin^2\theta_W$ to 0.0002 (10fb⁻¹) and test γ^*/Z interference at \sqrt{s} much greater than LEP
- Other electroweak measurements
 - Multiboson production (test gauge couplings)
 - Boson plus jets

QCD

- No one doubts that QCD describes the strong interaction between quarks and gluons
 - Its effects are all around us:
 - masses of hadrons (stars and planets)
 - But it is not an easy theory to work with
- Use the Tevatron to
 - Test QCD itself
 - Understand some outstanding puzzles from Run I
 - Develop the expertise to calculate, and confidence in, the backgrounds to new physics
 - Excellent interaction between the experimental and phenomenology communities

Some QCD Physics goals for Run II

Jets in Run II

DØ Run II Preliminary

Searches for New Physics

- The Tevatron, as the world's highest energy collider, is the most likely place to directly discover a new particle or force
- We know the SM is incomplete
 - Most popular extension: supersymmetry
- Predicts multiple Higgs bosons, strongly interacting squarks and gluinos, and electroweakly interacting sleptons, charginos and neutralinos
 - masses depend on unknown parameters,
 expected to be 100 GeV 1 TeV

Lightest neutralino is a good candidate for cosmic dark matter Potentially discoverable at the Tevatron

Supersymmetry signatures

- Squarks and gluinos are the most copiously produced SUSY particles
- As long as R-parity is conserved, cannot decay to normal particles
 - Jets plus missing transverse energy signatures

Make dark matter at the Tevatron!

Detect its escape from the detector

Possible decay chains always end in the LSP

Search region typically > 75 GeV

Searching for squarks and gluinos

Chargino/neutralino production

- "Golden" signature
 - Three leptons
 - very low standard model backgrounds
- This channel becomes increasingly important as squark/gluino production reaches its kinematic limits (masses ~ 500 GeV)

• Reach on χ^{\pm} mass, 2fb⁻¹ ~ 180 GeV (tan β = 2, μ < 0) ~ 150 GeV (large tan β)

Searches have begun.

So far number of events is consistent with expectations — we need a lot more data, but the tools are in place

Run II Trilepton candidate

Other Searches at the Tevatron

- Other Tevatron search channels for SUSY
 - GMSB → Missing E_T + photon(s)
 - Stop, sbottom
 - RPV signatures
- Searches for other new phenomena
 - leptoquarks, dijet resonances,
 W',Z', massive stable particles,
 doubly charged particles...

Several search results already comparable or better than Run I

CDF Run II $Z' > 650 \text{ GeV/c}^2$

Extra Dimensions

- Run II is also testing the new and exciting idea of extra dimensions
 - Can gravity propagate in more than four dimensions of spacetime?
 - If these dimensions are not open to the other SM particles and forces, we would not perceive them
 - Particle physics experiments at the TeV scale could see effects (direct and indirect)
 - Measure the structure of space-time!

$$\begin{vmatrix} q & \ell^{+} & q & \ell^{+} \\ \hline q & & \ell^{-} & q & \ell^{+} \\ \hline q & & & \ell^{-} & q & \ell^{-} \end{vmatrix}^{2} + \begin{vmatrix} q & \ell^{+} & q & \ell^{+} \\ \hline q & & & \ell^{-} & q & \ell^{-} \\ \hline q & & & & \ell^{-} & q & \ell^{-} \end{vmatrix}^{2}$$
(a) (b) (c)

	GRW	HLZ for n:		Hewett
		2	7	$\lambda = +1$
diEM	1.12	1.16	0.89	1.00
diMU	0.79	0.68	0.63	0.71

DØ Run II Preliminary

With 300 pb⁻¹, we probe up to 1.6 TeV With 2 fb⁻¹, we probe up to 2 TeV

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Signature-based searches

We need to ensure that our searches are not constrained by our preconceptions of what might be "out there."

CDF dilepton top events

Follow up anomalies in Run I data, and set model-independent limits

"Sleuth" framework used very successfully by DØ

Phys. Rev. D {62} 92004 (2000)

The Higgs Boson

- In the Standard model, the weak force is weak because the W and Z gain mass from a scalar field that fills the universe
- The same field is responsible for the mass of the fundamental fermions
- If it exists, we can excite the field and observe its quanta in the lab
 - The Higgs boson
 - Last piece of the SM
 - Key to understanding beyond-the-SM physics like supersymmetry: a light Higgs is a basic prediction of SUSY
- All the properties of the Higgs are fixed in the SM with the exception of its own mass: simulations have no free parameters

Higgs Hunting at the Tevatron

- For any given Higgs mass, the production cross section and decays are all calculable within the Standard Model
- Inclusive Higgs cross section is quite high: ~ 1pb
 - for masses below ~ 140 GeV,
 the dominant decay is H → bb
 which is swamped by background
 - at higher masses, can use inclusive 10 production plus WW decays
- The best bet below ~ 140 GeV appears 10⁻³
 to be associated production of H plus
 a W or Z
 - leptonic decays of W/Z help give the needed background rejection
 - cross section ~ 0.2 pb

Dominant decay mode

Preliminary update on Higgs sensitivity

- Concentrate on low mass region (favored both in SM and SUSY)
- The Higgs reach at the Tevatron appears to be at least as good as was projected four years ago
- Our understanding will continue to improve

SUSY Higgs Production at the Tevatron

bb(h/H/A) enhanced at large tan β:

 σ ~ 1 pb for tanβ = 30 and m_h = 130 GeV

 $bb(h/A) \rightarrow 4b$

What if we see nothing?

Exclusion of a Higgs would itself be a very important result for the Tevatron

- In the SM, can exclude most of the allowed mass range with 10 fb⁻¹
- In the MSSM, can potentially exclude
 all the remaining parameter space with 5 10 fb⁻¹
- Would certainly make life "interesting" for SUSY at the TeV scale

Note: these plots do not yet take account of the Higgs reach update

Exclusion and discovery for SUSY Higgs sector, maximal stop mixing, sparticle masses = 1 TeV

Conclusions

- The Run II physics program has begun
 - We now have more data than Run I, taken at a higher CM energy with better detectors
- The combination of highest accelerator energy, excellent detectors, enthusiastic collaborations, and data samples that double every year guarantees interesting and important new physics results at every step.
- Each step answers important questions, and each step leads on to the next
- The collaborations are committed to
 - Maximize this physics program
 - Exploit the full potential of the world's highest energy collider and the large investments we have made in the accelerator and detectors
 - <u>Lay a firm foundation</u> for the LHC and for future initiatives at the TeV scale

We believe these goals

- call for a robust effort to deliver luminosity of order 10 fb⁻¹ by the time LHC starts to produce physics
- require the silicon detectors be upgraded to exploit the full luminosity

